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Abstract

Multiscale problems such as magnetic reconnection and turbulence are notoriously hard to simulate because the physics
of micro and macroscales are strongly linked. This study is the first application of a novel numerical scheme called Equa-
tion Free Projective Integration (EFPI) to a plasma system: we simulate the propagation and steepening of a 1D ion acous-
tic wave. In EFPI, the simulations act on two scales, an ‘‘inner’’ microscale and an ‘‘outer’’ coarse scale. The long timescale
dynamic behavior of the system is determined by extrapolating forward estimates of the coarse scales obtained from short
duration simulations of the microscale dynamics. There are no explicit closed-form equations governing the coarse scales,
hence the name ‘‘Equation Free.’’ In this study, a kinetic particle-in-cell code called P3D is used to simulate the microscale
dynamics. We find excellent agreement between P3D and EFREE, the EFPI code. The differences which occur between the
two are not due to numerical accuracy issues, but instead are caused by an incomplete representation of the system at
coarse scales. More specifically, as the ion acoustic wave becomes a shock with Debye length scales, the assumptions of
quasi-neutrality and maxwellian ions become invalid. Generalizing the ‘‘outer’’ coarse representation of the system to
include non-maxwellian ions and Debye length structures should minimize the differences between P3D and EFREE.
The largest EFREE run in this study showed a speedup of about 13 times over its P3D counterpart. Remarkably, the
speedup of EFREE over P3D scales linearly with system size: the larger the simulation, the greater the speedup. The results
indicate that EFPI is a potential candidate for simulating multiscale plasma problems.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical simulations have allowed great leaps forward in our understanding of many physical systems.
However, there is one class of problems, multiscale problems, that have defied brute force numerical methods.
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Multiscale systems are those systems that exhibit behavior in which there is a direct linkage between the phys-
ics at very small lengthscales/fast timescales and the behavior at large lengthscales/slow timescales. In plasmas,
two important multiscale problems are magnetic reconnection and turbulence. During magnetic reconnection,
magnetic field lines are allowed to break and reform at extremely small length scales, releasing large amounts
of magnetic energy in the form of plasma flows and heating. Reconnection can have a macroscopic effect,
however, releasing energy during solar flares and causing the global convection patterns seen in the Earth’s
magnetosphere. In laboratory fusion plasmas, on the other hand, the properties of very small scale turbulence
can determine the transport properties of the whole system. The nature of the transport ultimately determines
if the experimental device can keep the plasma at high enough pressure to allow fusion to occur.

In this paper we apply a particular multiscale computational algorithm, called Equation Free Projective
Integration (EFPI) to plasmas [1–5]. Other techniques are also being studied for application to multiscale
problems [6–11].

The usual way of simulating systems that have disparate scales is to first derive a set of reduced equations
valid at large scales and then solve that set of equations using a numerical algorithm. EFPI, on the other hand,
relies on microscopic simulations which include all small scale physics instead of reduced equations. A numer-
ical algorithm is then used to map those microscopic simulation results to coarse (macroscopic) scales and use
them to evolve the global behavior of the system. The advantage of using microscopic simulations coupled
with a numerical mapping algorithm is that it has the potential to implicitly account for the macroscopic
effects of the microscale physics. There must be sufficient separation of scales, however, between the microscale
physics and the macroscale physics in order for EFPI to be effective.

EFPI is a novel technique which needs to be studied carefully in order to evaluate its strengths and weak-
nesses and determine if it has the potential to allow multiscale plasma simulations not possible with conven-
tional techniques. We emphasize that this technique is not guaranteed to succeed in modeling multiscale
plasma, but if successful the payoff is large enough to justify the time spent studying it. A first step in this pro-
cess is to apply EFPI to a straightforward plasma problem and compare it with trusted simulation results. In
this paper, therefore, we simulate the propagation and steepening of a 1D ion acoustic wave using both a
kinetic particle-in-cell (PIC) code as well as an EFPI code and compare the results. Note that the ion acoustic
wave is not a multiscale problem, nor should one draw the conclusion that EFPI in its current state is more
effective at simulating this wave than other more conventional kinetic plasma simulation techniques: Implicit
moment kinetic PIC codes, for example, use approximations of the particle moments to estimate the future
values of the fields which accelerate the particles [12–15]. Direct implicit kinetic PIC codes work directly with
the particle equations of motion, but linearizes them to allow an estimate of their future values used in the
implicit scheme [16–19]. ‘‘Multiscale’’ PIC codes use different step sizes for different spatial regions of the
codes, depending on the relevant gradient scales in each region [20]. ‘‘Multiscale’’ PIC codes have been used
to simulate the propagation of an ion acoustic shock [21], and the direct implicit method has been used to
simulate ion acoustic fluctuations [22].

The EFPI code in this study uses the PIC code as its ‘‘inner’’ microscopic simulator. The global (coarse)
variables are first ‘‘lifted’’ to a fine scale microscopic representation with which the PIC code is initialized.
The PIC code is stepped forward in time, and the results are ‘‘restricted,’’ or smoothed, to the coarse repre-
sentation and saved for each time step. Using a least squares fit, the time derivatives of the coarse variables are
estimated at each grid point. Finally, the value of each coarse variable grid point is projected forward with a
large time step and the process is repeated.

We find that the Equation Free Projective Integration code, EFREE, reproduces the kinetic code (P3D)
quite well. The only differences which do arise are due to physics assumptions made in the lifting algorithm
of EFREE, specifically that the ion distribution functions remain maxwellian and that the plasma remains
quasi-neutral. Interestingly, there is a Courant condition on the EFREE coarse projection time step based
upon the coarse grid and the ion acoustic wave sound speed, even though no explicit macroequations are
explicitly written and evolved. We also find that the restriction to the coarse grid is critical for allowing EFPI
to be suitable for this test problem. Without the restriction to the coarse grid, fluctuations in the variables
make an accurate least squares fit impossible, and the Courant condition requires the coarse time step to
be prohibitively small.
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Most exciting for this 1D study are the results of the speedup of EFREE over P3D. For the largest system
size in this study, EFREE shows a speedup of about 13. This speedup scales linearly with system size. Thus,
the speedup of EFREE over P3D will become larger with system size, and is expected to become larger with
added dimensions.
2. Ion acoustic wave: theory

This study uses as a test case the ion acoustic wave. We begin with a straightforward fluid analysis of the
linear ion acoustic wave. The fluid equations used for the derivation are
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where n is density, V is velocity, P is pressure, and the subscript ‘‘i’’ and ‘‘e’’ refer to positive ions (protons)
and electrons. In using these equations we have ignored electron inertia terms (me) and used isothermal elec-
trons ðce ¼ 1Þ because the electron thermal speed is so much faster than the sound speed. We set the electron
temperature initially spatially constant, which allows rP e ¼ T erne for all time. Linearizing the equations,
fðx; tÞ ¼ f0ðxÞ þ ~feðik�x�xtÞ, and assuming V0 ¼ 0 yields the following dispersion relation:
x2 ¼ k2C2
se

1þ k2k2
De

þ k2C2
si; ð6Þ
where C2
se ¼ T e=mi, C2

si ¼ ciT i=mi, kDe ¼ Cse=xpi. This is the ion acoustic wave including a finite ion tempera-
ture and electron Debye corrections. To make sure that ion Landau damping is weak, it is necessary to take
T e=T i � 1 [23].
3. Full particle code: P3D

The kinetic simulation code P3D [24,25] is used in this study as both the ‘‘inner’’ microscale simulator for
the equation free code EFREE and used as a ‘‘correct’’ simulation for comparison purposes. It is a fully elec-
tromagnetic particle-in-cell (PIC) code which is parallelized using MPI for runs on massively parallel comput-
ers. The simulations in this study were run on 1 node (16 processors) of an IBM SP. Although the code steps
forward the full electromagnetic equations, for the 1D ion acoustic wave used in this study, the magnetic fields
play no role. We therefore normalize our equations as follows. Length (L0) is normalized to the length of the
smallest simulation in this study, velocity (V0) is normalized to

ffiffiffiffiffiffiffiffiffiffiffiffi
T 0=mi

p
, with T e ! T e=T 0 and T i ! T i=T 0.

Although B0 plays no role, it requires a normalization factor for the equations, so we define B0 such that
eB0=ðmicÞ ¼ V 0=L0. The normalized equations are
oB
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piJ ð8Þ

r � E ¼ �x2
piðni � neÞ; ð9Þ
where �c is the normalized speed of light, �xpi is the normalized ion plasma frequency, and J is the total current
calculated by summing the velocities of particles around each grid point. A multigrid relaxation algorithm is
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used to correct E such that Eq. (9) is satisfied. The E and B fields are interpolated to the location of each par-
ticle, and each particle is stepped forward using:
dVa

dt
¼ qami

ma
½Eþ Va � B� ð10Þ

dxa

dt
¼ Va; ð11Þ
where the a represent electrons or ions and qa is the sign of the charge for the species.
We initialize both the EFREE and the P3D simulations with the same system. The range of x in the sim-

ulations is from 0 to Lx, and k ¼ 2p=Lx. Setting dn ¼ 0:2, the initial conditions in code normalized units are
~ni � dn sinðkxÞ ð12Þ
ni ¼ 1:0þ ~ni ð13Þ
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x is the ion acoustic frequency defined in Eq. (6). In code units, C2
se ¼ T e0, C2

si ¼ ciT i0, k2
De ¼ T e0=�x2

pi, with
T e0 ¼ 1:0, T i0 ¼ 0:05, �xpi ¼ 36, �c ¼ 120. mi=me ¼ 1800. As seen from Eqs. (14) and (19), Vix and Vex are
shifted by V shift ¼ �1:0 so that the simulations are performed in a frame basically co-moving with the wave
(the phase speed of the wave in the lab frame is � 1:06Þ [26]. There are 5000 particles per grid cell. It is nec-
essary to take T e0 � T i0 in order to minimize Landau damping. Ex, ne, and Vex are calculated directly from the
full nonlinear equations because they are passive variables in the EFREE code, and Eqs. (17)–(19) define the
procedure for their determination in the EFREE code.

The electrons have a very large thermal speed, much larger than the sound speed of the wave. Every elec-
tron therefore samples multiple waves over 1 period, leading to significant mixing, so the electrons act isother-
mally ðce ¼ 1Þ. The ions, however, because their thermal velocity is much less than the sound speed are nearly
adiabatic, which in a 1D system corresponds to ci ¼ 3. In the simulations in this study, however, the initial
conditions were used setting ci ¼ 1. This leads to a backward propagating ion acoustic wave with
dni � 0:005, as well as an entropy mode with dni � 0:017. Both of those density amplitudes, however, are
smaller than the random noise in the ni due to the finite number of particles per cell, and have little if any
discernible effect.

The individual electron and ion particles must be loaded in such a way that they are consistent with the
number densities, velocities, and temperatures in the physical system. In order to minimize the initial noise
in the system, the particles are given a quiet start [27]: The number of particles needed to generate a given den-
sity are loaded randomly around each grid point, which ensures that each Debye sphere has an equal number
of electrons and ions. These particles are loaded with a maxwellian distribution in velocity space with a veloc-
ity shift consistent with the velocities and temperatures at that grid point.

The sets of simulations used in this study are shown in Table 1.

4. Equation Free Projective Integration: EFREE

Simulating multiscale problems is extremely difficult because of the intimate coupling between the fine scale
physics with the coarse grained dynamical behavior. Kinetic simulations include all of the microscale physics,



Table 1
Simulation run sets used for this study

Set # Type Lx nxm nxc Ne (range)

1 P3D 1.0 128 – –
2 EFREE 1.0 128 32 10–20
3 P3D 2.0 256 – –
4 EFREE 2.0 256 32 10–20
5 P3D 4.0 512 – –
6 EFREE 4.0 512 32 10–20
7 P3D 8.0 1024 – –
8 EFREE 8.0 1024 32 10–20
9 EFREE 2.0 256 16 20

P3D is the kinetic PIC code and EFREE is the Equation Free Projective Integration code. Lx is the system length. nxm and nxc are the
number of micro and coarse grid points, respectively. Ne is number of micro time steps during each projective integration cycle.
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but are too computationally expensive to simulate the full macroscopic system. Macroscopic codes using some
fluid closure can simulate global scales, but leave out important microscale physics. The Equation Free Pro-
jective Integration method (EFPI) attempts to address these problems by stepping forward data on a coarse
representation, but instead of determining the time derivatives of the coarse variables from a set of fluid or
other equations, they are estimated on demand by the results of short bursts of an appropriately initialized
ensemble of kinetic simulations.

The basic idea of EFPI is that there are two representations of the data. One, a micro kinetic representation
in which the system is fully defined down to some fundamental level with very fine spatial and temporal res-
olution. And two, a coarse representation in which the system is approximated by some smaller number of
variables with much coarser spatial and temporal resolution. Translating data back and forth between these
two representations is called respectively lifting and restricting: lifting takes data from coarse to micro, and
restricting takes data from micro to coarse. In restricting the data, substantial microscale information is lost
due to discarded variables and loss of resolution. In lifting the data, interpolation of some kind and assump-
tions must be made in order to fill in the information which is not included in the coarse representation.
Choosing which variables to use in the coarse representation is extremely important, and is driven by our
physical knowledge of the system, or through data mining techniques such as diffusion maps [28].

In this test case of EFPI, the kinetic simulator will be P3D, a fully electromagnetic particle-in-cell (PIC)
kinetic code. The microrepresentation contains discrete ion and electron particles as well as the electric field.
The coarse variables are all moments of the ion (proton) distribution function determined from the discrete
ion particles. The code which utilizes EFPI is called EFREE.

Fig. 1 shows the basic projective integration cycle used in this study. At the beginning of the cycle, the
coarse representation of the data is known, as shown in Fig. 1a which shows the ion density, ni versus x.
The coarse representation of the data is comprised of ‘‘active variables,’’ i.e. those coarse variables which
are directly integrated forward in time. This data is then lifted onto a grid with much finer spatial resolution
(in this case 16 times more) through a simple linear interpolation. The lifting sequence also must fill in the data
needed to initialize P3D which is not directly represented in the coarse representation (called ‘‘passive vari-
ables’’). After the lifting, P3D is initialized using the fine representation, shown in Fig. 1c. Notice the random
noise in the kinetic initialization, which is due to the finite number of particles per grid cell. The kinetic code is
then stepped forward some Ne number of steps, where the ‘‘e’’ stands for extrapolation, as shown in Fig. 1d
and e. This data is then restricted through a simple linear smoothing to give the coarse representation at each
time (Fig. 1f and 1g). Finally, in Fig. 1h, for each of the coarse grid points (32 in this case), a least squares fit is
performed on the restricted data to determine the time derivative ðoni=ot in this case) and that time derivative
is used to project the coarse variable forward by a large projection step Dtp ¼ N pDtm, where Dtf is the fine scale
grid step. The result is shown in Fig. 1i, which shows the coarse data projected forward a time of Dtp. The
whole cycle then repeats.

We emphasize that the two-scale grid structure used in this study is critical for allowing the speedup of the
Equation Free Projective Integration algorithm. In this study, we find that without restricting the data to a
coarse representation, the level of fluctuations is too high to accurately estimate a time derivative through



Fig. 1. An overview of the projective integration cycle of EFREE, the Equation Free Projective Integration code using a kinetic particle
code (P3D) as its fine scale solver.
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fitting. In addition, we find a Courant condition based on the coarse grid and the sound speed, which implies
that projectively integrating on a microscopic grid would require a time step that is much too small to be use-
ful for multiscale problems.

We now describe in detail each step of the projective integration cycle.

Coarse representation of data. In this study, the coarse data usually has a total of 32 grid points along x

(except for run 9), as can be seen in Table 1. As mentioned above, those variables which are directly pro-
jectively integrated forward are called ‘‘active’’ variables. The choice of which variables are active is extre-
mely important, and must include those variables critical for correctly describing the dynamics of the coarse
system. For this study, we take ni, V ix, and Pi as active variables. Ex and ne are treated as passive quantities
and are calculated directly from the active variables.

Lifting and active variables. Lifting requires two important actions: Increasing the resolution of data using
linear interpolation; and determining the non-active coarse variables needed to initialize the full particle
code.

The linear interpolation is done in successive factors of two. Suppose there are nxc coarse data points for
the variable f. The first level of interpolation is
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for i ¼ 1; nxc f ð1Þ2i ¼ fi; f ð1Þ2i�1 ¼ 0:5ðfi�1 þ fiÞ; ð20Þ

where (1) represents the first level of interpolation and fi is the ith grid point of f. Periodic boundary con-
ditions are assumed, so that f0 ¼ fnxc and fnxcþ1 ¼ f1. After ‘ iterations, f ð‘Þ will have nxm ¼ 2‘nxc grid points.

The next step is to ‘‘fill in’’ the passive variables which are necessary in order to initialize the full particle
simulation. It is assumed that both electrons and ions maintain a maxwellian distribution function, so only
density, velocity, and pressure are necessary to completely determine the distribution function of each spe-
cies. The passive variables are determined as follows:
Ex ¼ �
T e0

ni

oni

ox
ð21Þ

ne ¼ ni �
1

�x2
pi

oEx

ox
ð22Þ

V ex ¼ V ix ð23Þ
T e ¼ T e0 ð24Þ
T i ¼ P i=ni ð25Þ
V ey ¼ V ez ¼ V iy ¼ V iz ¼ 0 ð26Þ
Ey ¼ Ez ¼ 0 ð27Þ
Bx ¼ By ¼ Bz ¼ 0: ð28Þ
Note that P i ¼ P ixx, where Pixx is the xx component of the ion pressure tensor. In Eq. (21), it is assumed
that ni � ne, which will eventually break down as the wave becomes extremely steep. Before this approxi-
mation ceases to be valid, however, the ions in this study become non-maxwellian. Eqs. (21) and (22) could
also be iteratively solved to allow quasi-neutrality to be broken during an EFREE run.

Microscopic code initialization. Once all of the necessary microvariables are determined during the lifting
process, P3D is initialized.

Microscopic stepping. After it is initialized, the kinetic code is stepped forward Ne steps using a time step
Dtm, where the ‘‘e’’ stands for extrapolation step.

Restricting. After each microscopic time step, the data is restricted onto the coarse grid. In restricting the
data, all but the active variables ni, Vi, and P i ¼ P ixx are thrown out. The restricting of the active variables is
a linear smoothing operation. Suppose that there are nxm micro grid points. The first level of restricting is:
for i ¼ 1;
nxm

2
f ð1Þi ¼ 0:25f 2i�1 þ 0:5f 2i þ 0:25f 2iþ1 ð29Þ
where in this case the (1) represents the first level of restricting. As above, periodic boundary conditions are
assumed. f ‘ will have 2�‘nxm grid points. This linear smoothing is repeated until nxc is reached.

Projective integration. At this point, for each active variable f there are Ne data points corresponding to the
Ne time steps for each of the nxc grid points. At each grid point, a least squares fit is used to determine the
best fit slope in time of the active variable, _f . The variable is then projected forward using:
f ðt þ DtpÞ ¼ f ðtÞ þ Dtp
_f : ð30Þ

Trapezoidal leapfrog. The timestepping shown in Eq. (30) is not exactly what is done for this code. In order
to increase the accuracy of the integration forward in time, a trapezoidal leapfrog method is employed to
step the active coarse variables forward in time. Each Dtp time step forward is actually two equation free
cycles shown above. The time derivative of a coarse variable _f ðtÞ is determined through the procedure
described above. The full stepping process is
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The si
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f ðt þ Dtp=2Þ ¼ 1

2
½f ðt � DtpÞ þ f ðtÞ� þ Dtp

_f ðtÞ ð31Þ

f ðt þ DtpÞ ¼ f ðtÞ þ Dtp
_f ðt þ Dtp=2Þ: ð32Þ
5. Ion acoustic wave: simulation results

Fig. 2 shows the ion density at many different times for a full particle simulation of the ion acoustic wave
(run 5 in Table 1). Each successive time is shifted up by a small amount.

The random density fluctuations are quite noticeable. Initially they are quite small owing to the quiet start,
but within about 40 micro time steps ðDt � 0:0067Þ they grow to their asymptotic size. In this study we find that
the restriction to the coarse scale is critical for reducing the fluctuations in the active variables to a level that
allows an accurate determination of o=ot from a least squares fit. Even with restriction, however, the net charge
ðni � neÞ and thus the electric field Ex are still too noisy to be usable as active variables. That is why we use Eq.
(21) to determine the electric field as a passive variable. Similarly, the high temperature of the electrons leads to
large fluctuations in the electron velocity, rendering it unusable in this study as an active variable. More sophis-
ticated fitting schemes such as maximum likelihood estimation could possible overcome these noise issues [29].

In Fig. 2, the wave progressively steepens until dispersive effects from the electron Debye length ðkkDe � 1Þ
become important at about t ¼ 2:67. From t ¼ 2:67 to t ¼ 3:33, a localized electrostatic peak in the ion density
forms, which leads to a very large bipolar electric field. This localized peak breaks quasi-neutrality and there-
fore cannot be reproduced with the EFREE lifting algorithm used in this study.

The behavior of other variables in the kinetic simulations as well as the results for EFREE are shown in
Fig. 3. At t ¼ 0, the P3D and EFREE are very close. Differences are the result of random noise due to the finite
number of particles in the simulations. Note that the average initial V ix ¼ �1:0 because the simulations are per-
formed in a reference frame moving approximately with the wave velocity. At t ¼ 1:33, ni and Vix both show
Ion density versus x for run 5. Each successive time is shifted upwards by Dni ¼ 0:04, and the time between each plot is Dt ¼ 0:133.
mulation is performed in a frame moving with a velocity V frame ¼ 1:0, which is approximately the wave velocity.
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some steepening, but Pixx has increased substantially and is strongly anharmonic compared to ni and V ix. Com-
paring P3D and EFREE, ni and Vix are very similar, but there is already a noticeable difference in P ixx. This
difference, as well as the anharmonic shape of Pixx is due to the non-maxwellian distribution function of the
ions as will be discussed shortly. At t ¼ 3:33, the wave has steepened in P3D with a strongly localized density
peak which leads to a large electric field. ni and Vix as calculated from P3D and EFREE track well but Pixx does
not. These differences are due to three sources: First, EFREE assumes quasi-neutrality which is clearly broken
when kkDe � 1 at the shock front. Second, the peak in ni and Ex is only marginally resolved by the EFREE res-
olution of Dx ¼ 0:03750. Third, the ion distribution functions in P3D are now strongly non-maxwellian.
Despite all of these shortcomings, the propagation speed of EFREE versus P3D matches almost exactly. In
addition, these differences are due to an incomplete representation of the system at coarse scales in EFREE,
not to a numerical problem, so including the missing physics in EFREE is likely to reduce the differences.

The evolution of the ion distribution function, fi, into its non-maxwellian state can be seen in Fig. 4. On the
left hand side are grayscale (color online) plots of log10fi with contours of total energy, Etot. Etot ¼ mV 2

ix=2þ e/,
where Ex ¼ �r/ and Vix has been shifted into a frame moving with the wave. At t ¼ 0, the distribution func-
Fig. 3. Full particle results (solid) and EFREE results (dashed) for the ion acoustic wave (runs 5 and 6 with N e ¼ 20. The three active
EFREE variables (ni, V ix, and Pixx) as well as Ex are shown. The times shown are (left) t ¼ 0:0, (middle) t ¼ 1:33; and (right) t ¼ 3:33.



Fig. 4. Unnormalized ion probability distribution functions, fiðx; vÞ, at three different times for a P3D run (run 5). Left plots: grayscale
(color online) of log10fi, with total energy contours. Right plots: Cuts of fi along Vix at a given x = x0. Top: t ¼ 0:0, Middle: t ¼ 1:67,
Bottom: t ¼ 3:33.
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tion is a shifted maxwellian with a velocity shift dependent on x. Note that for x > 2 the low speed tail of the
maxwellian lies on trapped energy contours. At t ¼ 1:67 in the vicinity of x � 2, this low speed tail has started to
reflect. By t ¼ 3:33, the reflected particles are unmistakable and the distribution function is double peaked.

6. Scaling properties

Although the good agreement for the propagation and steepening shown in the previous section is very
promising, it must be accompanied by a speedup in the runtime of EFREE over P3D in order for EFREE
to be a viable multiscale simulation code. The majority of computational time used to run EFREE is used
during the stepping of the microscopic kinetic simulations on the micro grid. The time to lift, restrict, deter-
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mine the time derivative of the active coarse variables, and project them forward in time is relatively small in
comparison. Thus, the speedup depends on keeping the number of kinetic micro time steps (Ne) during each
projective integration cycle small and making the projective integration time step ðDtpÞ as large as possible.
Most important is how these quantities change as the system becomes larger.

An important question determining the usability of EFREE are the timescales which must be resolved for
stable stepping. In the P3D ion acoustic wave, the light wave, electron plasma wave, and electron thermal
velocity all place stringent requirements on the particle time step, requiring Dtm ¼ 0:000167 for good energy
conservation. If EFREE is required to resolve any of these microscale times with the coarse time step Dtp,
it will not be a viable multiscale code. For this set of simulations, however, we find the stability condition
Dtp K Dxc=ð2csÞ, a Courant condition based on the macroscopic sound wave speed. This is heartening not only
because cs is a macroscale effect, but also as expected EFREE is limited by a physical effect, even though there
are no explicit equations at the macroscopic scale. This is seen in Fig. 5, which is the maximum stable time step
versus grid scale. The approximate slope of the points is about 1/2, consistent with the Courant condition
given above. This Courant condition shows why restricting the data before projecting it forward is critical
for making EFPI viable. Reducing Dtp to a Courant condition based on the microscopic grid scale would make
EFREE too computationally expensive to be used to study multiscale problems.

Determining the minimum number of time steps Ne necessary for stability and good accuracy is more chal-
lenging. We define an error function � as
Fig. 5.
N e ¼ 2
�2 ¼
Pnxc

j¼1ðnEFREE
j � nP3D

j Þ2Pnxc
j¼1½ðnEFREE

j Þ2 þ ðnP3D
j Þ2�

; ð33Þ
where nEFREE
j is the jth coarse grid cell in the EFREE output and nP3D

j is the jth coarse grid cell in the P3D
output. For this study, we present only the error results for ni, but we also examined the results using Vix

and the conclusions were the same. The coarse representation of P3D data is done by restricting the microscale
data output after the P3D simulation has finished. The numerator in Eq. (33) is a measure of the total differ-
ence between P3D and EFREE, and the denominator is a normalization factor. Fig. 6a shows the growth of
error versus time for six different values of Ne in run 6. From t = 0 to t ¼ 0:5 the error remains quite low for
the cases with larger Ne. At later times, the error grows quickly because of the non-maxwellian assumptions in
EFREE. Most interesting, however, is that at early times, N e ¼ ½16� 20� are indistinguishable whereas for
N e 6 14 there is clearly a diverging error. This analysis allows us to determine the smallest Ne possible to re-
tain the highest accuracy. In this case, N emin�16.

Performing this analysis on 4 different system sizes (each with 32 coarse grid points) gives the results shown
in Fig. 6b. Quite surprisingly, N emin remains roughly constant as the system size is increased. The effect this has
on the runtime of EFREE is dramatic. As Lx is doubled in this set of simulations, the time it takes to run the
kinetic microstepper is doubled because the number of microscale grid points and the number of particles dou-
bles. However, the Courant conditions gives Dtp 	 Lx=ðnxccs0Þ, with nxc ¼ 32. This means that Dtp doubles if Lx

doubles, so the increased computation time used during the microscopic simulations is offset by the larger
Largest projective integration time step Dtp possible versus coarse grid scale Dxc. These results are for runs 2,4,6,8,9 in Table 1 with
0.



Fig. 6. (a) The error function (�2) versus time for various Ne of run 6 in Table 1. (b) Minimum Ne necessary to reach asymptotic error
versus system size Lx. The accuracy of minimum Ne is about ±2.

Fig. 7. (a) Time to run one t0 ¼ L0=Cs0 versus system size Lx for runs 1–8 in Table 1 with N e ¼ 20. The P3D runs are shown as diamonds,
and the EFREE runs are shown as squares. All simulations were performed on 16 processor of an IBM SP II. Note that the normalization
length L0 is chosen so that the smallest system has a length of 1.0. (b) Speedup factor between identical EFREE and P3D runs.

582 M.A. Shay et al. / Journal of Computational Physics 226 (2007) 571–585



M.A. Shay et al. / Journal of Computational Physics 226 (2007) 571–585 583
coarse time step. As seen in Fig. 7a, the time for EFREE to run one normalized time unit ðt0 ¼ L0=cs0Þ remains
constant as the Lx is increased. Note that L0 is chosen so that the smallest simulation has a length of 1.0 and
that all simulations are run on 16 processors of an IBM SP II. For P3D, on the other hand, the run time
increases linearly with Lx, giving a speedup factor for EFREE that scales linearly with Lx, as shown in
Fig. 7b. For a 1D system, this is quite a large speedup. For the largest system with Lx ¼ 8, the speedup is
13·, and is expected to become even larger for a 2D or 3D system.

This linear speedup and independence of Nemin from Lx is quite surprising. One would expect Nemin to be
dependent on the accuracy of the projective integration. The signal to noise ratio of the least squares fit used to
determine the time derivative in EFREE is equal to n 	 rf =Mt, where rf is the error in the least squares fit and
Mt is the time derivative. The random noise associated with fluctuations in the number of particles is expected
to scale as N�1=2

ppg , where Nppg is the number of particles per coarse grid. From the derivation of least square,
rf 	 ðNppgN eminÞ�1=2 	 ðLxN eminÞ�1=2. With Mt 	 L�1

x , this gives n 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lx=N emin

p
. Requiring n be greater than

some threshold value implies N emin 	 Lx, which contradicts the computational results. This simple argument,
however, assumes that there is no feedback mechanism to minimize perturbations as they form. A grid scale
perturbation in the density will decrease in magnitude due to dispersion during sound wave propagation,
which has been verified using EFREE.

To further demonstrate that the random noise due to the number of particles per grid is not controlling
Nemin for this study, we have performed the error analysis used in Fig. 6a on EFREE runs with the same
parameters as run 6 but with Nppg ¼ 1250 and 20,000. Although � is larger for smaller values of Nppg, the value
of Ne at which � asymptotes does not change with N ppg. Nemin is independent of Nppg, which implies that error
associated with the finite number of particles per cell is not controlling N emin.

7. Conclusions

In this study we sought to determine if Equation Free Projective Integration (EFPI) has the potential to be
a viable method for simulating plasmas using kinetic particle-in-cell (PIC) codes as the microstepper. Because
EFPI is such a novel technique, having no dynamical equations at the course scales, we applied it first to the
well known problem of the propagation and steepening of an ion acoustic wave. We stress that this is not a
multiscale system, and our ultimate goal for EFPI is not to study the ion acoustic mode. Our goal for this
study is to make an initial determination if EFPI can successfully simulate a simple plasma system like the
ion acoustic wave. The main findings are


 Equation Free Projective Integration (EFPI) with a kinetic PIC micro-simulation can accurately simulate
the propagation and steepening of an ion acoustic wave.

 The differences which do arise between the EFPI and fully kinetic simulation (P3D) are due to the physics

discarded in the lifting to the coarse representation: the assumption of maxwellian ions and quasi-neutral-
ity. Generalizing the course representation to include non-maxwellian ions and Debye length structures
should minimize these differences.

 The coarse time step is not dependent on the micro grid scale, but instead is determined with a Courant

condition based on the ion acoustic wave speed and the course grid scale. In this study, this leads to a
speedup of EFREE over the kinetic simulation (P3D) which scales linearly with system size, being 13 times
faster for the largest simulation performed.

From these findings we conclude that EFPI has the potential to be a viable candidate for simulating mul-
tiscale plasma problems. We wish to emphasize, however, that the propagation and steepening on an ion
acoustic wave is not a multiscale problem. The efficacy of EFPI for multiscale plasma dynamics still needs
to be demonstrated.

One should not draw the conclusion from this study that EFPI is more effective at simulating the ion acous-
tic wave than more conventional techniques such as implicit Particle-in-Cell (PIC) [15,18] or ‘‘Multiscale’’ PIC
[21]. The time step in implicit PIC, for example, is not limited by physics which is not resolved in the simu-
lation (often plasma waves and Debye scales). The ultimate goal of studying EFPI is not to simulate basic
ion acoustic phenomena more effectively, however. Simulating the ion acoustic wave is simply a first pass
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at determining the strengths and weaknesses of using EFPI on plasma systems. If successful, EFPI will be used
to simulate physics phenomena that defy simulation through conventional means. Reconnection is one such
example, and a particular reconnection question which may be well suited to EFPI is highlighted below. The
real strength of EFPI is that it has the potential to include the coarse scale effects of microscale physics, while
having a coarse time step not limited by such microscale physics.

The application of EFPI used in this paper is only one subset of possible EFPI algorithms. The method is
quite general, and allows any micro-stepping algorithm, whether it be explicit kinetic PIC, implicit PIC, Vla-
sov, hybrid, two-fluid, or even MHD. Or course, the kinetic stepper must be chosen carefully to include those
physical aspects which are deemed ‘‘important’’ for the problem being addressed.

Before attempting to apply EFPI to a truly multiscale problem, there are several issues that will probably
need to be addressed. One, it should be demonstrated that EFPI can work effectively on more general non-
maxwellian distribution functions. We are currently studying a method of representing the distributions using
a wavelet analysis. Two, the issue of random fluctuations due to PIC codes must be addressed. This issue will
probably be most important in problems with active electron variables, for the higher electron thermal velocity
will lead to larger fluctuations. If the fluctuations levels are too problematic for PIC codes, it may be necessary
to use a Vlasov solver to implement EFPI. Using an implicit PIC code as the microstepper could also combat
the problems with fluctuations by simply removing the fast timescale plasma waves from the system if they are
deemed to be unimportant for a given problem. Three, a better understanding is needed of the numerical accu-
racy and stability of EFPI. Although the Courant condition on the coarse time step seems straightforward, the
minimum number of micro time steps needed during each projective integration cycle (Nemin) is not well
understood. Numerical analysis is hindered by the fact that there are no equations that govern the coarse
scales.

Ultimately, we hope to apply EFPI to multiscale phenomenon which defy simulation through ordinary
means (including implicit techniques). It is clear that EFPI will not be able to simulate these systems while
still including all small timescales and length scales at the coarse level. The key is determining which physics
is important at the coarse level. This physics will determine both the coarse representation of the system and
the lifting method. Not all multiscale problems will be solvable with EFPI. It is only useful for those problems
which have a separation of scales between the micro and macroscales, i.e. which have a macro solution on a
slow manifold.

In terms of magnetic reconnection, one physics problem which may have adequate separation of scales to
allow the use of the EFPI method is the following: Can anomalous resistivity due to electron turbulence play a
mediating role in reconnection? In 3D kinetic PIC simulations of reconnection with a modest guide field, it has
been found that the current sheet near the x-line goes Buneman unstable and generates turbulence which scat-
ters electrons and causes anomalous resistivity [30]. It is not clear, however, if this anomalous resistivity plays
any role in determining the reconnection rate or simply facilitates the change in topology required for recon-
nection to take place. Determining the role of anomalous resistivity will require large-scale 3D simulations
which include electron kinetic physics. EFPI may be ideally suited for this task because of the large separation
of time scales between that of the high frequency turbulence and that associated with the global reconnection
geometry. The microscopic simulator will resolve all of the turbulence causing an average electron drag. If
simulations of EFPI are successful, this electron drag will self consistently manifest itself at the coarse scales
as an anomalous resistivity. Implicit particle simulation techniques [15,18] allow large time steps relative to
electron timescales, but would completely miss the dynamics of the turbulence if such time steps were used.
Therefore, implicit PIC codes are only marginally superior to a normal PIC code in addressing the problem
of anomalous resistivity in large-scale reconnecting systems. The development of novel algorithms to address
such problems remains an open scientific challenge.
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